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A B S T R A C T

The concept of the digital twin can be thought of as a virtual representation of a physical 
product, engineering system or facility. 

This paper presents the role of predictive engineering 
analytics, alongside operating data, in the digital twin. 
Using case studies, the authors demonstrate how predictive 
approaches can be developed to provide data where it cannot 
be measured and predict future operating data to improve 
performance, life and integrity of equipment, systems and 
facilities.

The digital twin is fundamentally based on data, larger datasets 
provide greater insight. Sensor and inspection data are critical. 
However, there are scenarios in which engineers require data 
where it cannot be measured or requires data that cannot be 
measured. Engineers require ways to extract this data, this can 
be done through predictive engineering analytics. Predictive 
engineering analytics, in the form of science-based simulations, 
combines multiple approaches, often based on fundamental 
principles of physics and engineering. This paper will demonstrate 
how high-fidelity approaches, such as Finite Element Analysis 
(FEA) and Computational Fluid Dynamics (CFD), combined with 
system-level simulation and reduced-order modelling can work 
together with field data to provide this data in real-time.

Two case studies presented show how combinations of different 
levels of science-based modelling approaches can help. A subsea 
thermal digital twin demonstrates how high-fidelity simulations, 
undertaken during system design, can be the foundation for 

reduced order system models capable of capturing critical thermal 
performance in real time; aiding hydrate risk management during 
operation. The methods used to train the real-time predictive 
approach are demonstrated. The second case presented focuses 
on structural integrity of a heat exchanger showing how real-time 
sensor data can be translated into structural integrity data and 
insight through simulation. The cases presented demonstrate the 
value of science-based predictions to generate data that cannot 
be obtained from operational sensor data alone. The authors aim 
to show how the predictive element of the digital twin can be first 
generated during design and evolved into real-time predictive 
approaches that provide operations with data that cannot be 
gained from sensors; when and where it is needed.

Digital twins typically use physical data, limiting operators of 
in-field equipment to make operational decisions based on 
information from sensor locations and historical data alone. This 
can limit assessment of operational performance and integrity 
of complex production and process systems. In this paper the 
authors aim to show how, by combining predictive approaches, 
at differing levels of fidelity and based on fundamental scientific 
principles, it is possible to generate the missing data required  , in 
both space and time. This can inform and guide operations; filling 
the gaps where and when physical data is not available.



A number of case studies are presented which were developed from interviews with 
industry data science experts.

In the development of engineering products and systems, 
data is generated from initial conceptual ideas, through 
phases of design, and then through manufacture into 
installation and operation.  How digital technologies are 
used to create, store, share and use the data has developed 
significantly in recent decades and in this time the concept of 
a digital twin has developed.

With increasing access to, and developments in, digital technology 
the concept of the ‘digital twin’ has evolved and is discussed, if 
not yet often used, in many facets of engineering. However, the 
digital twin remains a relatively new concept, the value of which is 
not commonly being gained.

Data is generally considered in terms of a discrete moment 
in time – the product, for example, at a particular stage in its 
lifecycle. This limits the possibilities and usefulness of the digital 
twin which, in fact, has a lifecycle that reflects its counterpart, 
the product itself. 

Data is generated at every stage of a product or system’s life. 
This data can be used to embed predictive capabilities within 
the digital twin, which in turn can provide valuable insights – for 
example, the capacity of a system to withstand a critical event – 
throughout its operational life. 

In this paper the authors will explore the value of building 
a predictive capability in the digital twin; using science and 
mathematics-based approaches capable of predicting real-world 
behaviours of equipment and systems. 

I N T R O D U C T I O N



THE DIGITAL TWIN

While there is no standard definition, a digital twin can be 
thought of as a virtual model, or representation, that is the 
counterpart (or twin) of a physical object and/or process. 

The definition above encompases an individual component, 
product, system or whole facility; depending on the chosen 
physical scale that the digital twin is to be associated with. 
The complexity of the behaviour predicted and the required 
or necessary level of detail will have a large part to play in 
this. 

For a digital twin to be of use, it needs to be capable of predicting 
behaviour of it’s real-world counterpart (or twin).  These 
predicted behaviours could relate to operational performance, 
efficiency and productivity, it could relate to reliability and 
integrity; the focus depends on the aims of the digital twin’s 
application. How the digital twins make predictions will depend 
on the system being considered.  Some may use data gathered 
from sensors to predict or control future behaviour, but often 
engineers need to understand detail about the system behaviour 
which cannot be measured directly. In such cases data must be 
predictied through methods such as predictive engineering. 

Primarily this paper seeks to explore the possibilities for use of 
predictive engineering analytics embedded in the digital twin 
during the operating life of equipment. The digital twin has a 
lifecycle that mirrors the actual engineering product or system, 
and can allow insights into product performance all the way 
from concept development right through to end-of-life.  In this 
paper the authors will show how design data can be critical to 
delivering a predictive capability in a digital twin to aid operational 
performance.

ENGINEERING LIFECYCLE AND THE DIGITAL TWIN

This paper will focus on a small sample of potential digital twin 
applications with focus on equipment in the operating phase of 
its lifecyle . However, the data and knowledge that is built up from 
the first inception of a product, system or facility can be extremely 
valuable in building a digital twin. Even at the earliest stages of 
product development, by providing a digital representation of the 
concept, the digital twin can help optimise and refine the product 
design - whether a single product, an engineering facility, or an 
entire oil field development (for example). The data gathered 

from a digital twin used to aid or optimize a design could then be 
used when implementing the in-serivce, or operating, version of 
the digital twin; this is discussed in a subsea-related case later in 
this paper.

During the manufacturing process, the digital twin can provide 
additional information to allow insight into the quality of the 
finished product – and check that the product will meet the 
specified requirements - before it is manufactured.

Following installation, the digital twin can provide continued 
insights into the performance of the equipment throughout its 
operational life – crucially, to verify the operational integrity or 
performance throughout its operational life, which, in the oil and 
gas industry, can extend into 20, or 30 years in longer field-life 
scenarios.

THE DATA-DRIVEN DIGITAL TWIN FOR OPERATIONS

With regards to a digital twin in the context of an operating system 
take, for example, a subsea production tree on the seabed; used 
to control flow from, and provide access to, a subsea well.  These 
complex engineered systems have a wide range of requirements, 
functions and capabilities.

While the system is in operation, sensors enable operators 
to stream data from the seabed – measurements from flow 
meters, temperature sensors, pressure transducers and sand 
monitors for example. Large amounts of data may be generated 
from the sensors, but the data must be curated in order that 
it may be analysed to provide engineering insight. The scale of 
this data curation task, if not appropriately planned, is often an 
underestimated element in both the application of data science 
and when building the digital twin. It becomes an operational 
challenge to gain insight from the data produced.

When the datasets are in an accessible format for analysis, 
we can begin to understand and use it, to learn and to inform 
operating decisions. Such decisions could be for controlling the 
production rate, or the system itself; to help understand or plan 
maintenance, to aid flow assurance or perhaps to improve the 
efficiency or operation of a particular system.
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Figure 1 Operating digital twin flow of data and information

Filling in the data gaps

There are many situations where the data required to make 
engineering decisions may be unavailable. For example, we may 
need to know temperatures, pressures or erosion rates at a 
location where no sensors are positioned. Equally, sensors cannot 
measure future events.  Minor unexpected operating conditions, 
continuing for extended periods, have the potential to impact a 
system’s efficiency or maintenance requirements, while extreme 
events can significantly impact the integrity or operating life of 
the system.  

To predict system behaviour at a point in the future, or evaluate 
whether a system has the capacity to continue operating safely 
beyond design conditions, requires more than the existing 
dataset, which details how a system reacts to a known operating 
envelope. Similarly, data from sensors alone, which may be in 
the form of raw data such as sand flow rates, is not sufficient to 
predict mechanisms such as erosion.

Data beyond that supplied by sensors (and from design data) is 
required to generate a digital twin. This could take the form of 
data from conditions or locations that are unable to be measured 
as well as having the ability to transform raw data measured 
from the field into engineering insight for example transforming 
sand flow rates into erosion rates. Generating the data that is 
unavailable or cannot be extrapolated through historical or design 
information is often a challenging aspect of building a digital twin.

DIGITAL TWIN FOR OPERATIONS – INCLUDING 
PREDICTIVE ANALYTICS

A complete digital twin of an operating system must include 
the ability to predict behaviour in the future.  To build a digital 
twin, one needs data from the field, and the ability to curate and 
translate that data into meaning, which can then be combined 
with predictive aspects to inform decision-making. With this data 
available, operators and engineers gain a deeper understanding 
of the system, from which operational decisions based on 
engineering judgement can be made. 

This analysis and judgement, may be made by humans, artificial 
intelligence, machine learning algorithms, or perhaps all three 
working in concert to translate the data into insights that can 
support confident decision-making for control maintenance, for 
example, or system improvement.

 



Figure 2 Operating digital twin flow of data and information including predictive 
data generation

PREDICTIVE DATA THROUGH SIMULATION

‘Predictive engineering analytics’ is the application of multi-
disciplinary engineering simulation, coupled with intelligent 
reporting and data analytics. Intelligent reporting and data 
analytics refer to how data is used and processed. 

In engineering endeavours one can view simulation as the 
application of science-based models to predict real-world 
behaviours, of equipment or of complete systems. Examples 
might be flow simulation based on Navier-Stokes equations, 
structural simulations solving the stress or deformation of a 
system under load or perhaps electromagnetic behaviours and 
phenomena governed by the Maxwell equations.  Rather than 
relying solely on data analytics from field measurements, science-
based approaches need to be incorporated. 

PREDICTIVE DATA GENERATION - APPROACHES

Most real-world physical behaviour can be simulated – such as 
fluid mechanics, heat transfer, electrical behaviour, acoustics, 
vibration, chemical or structural response – using equations 
and modeling techniques that draw on fundamental scientific 
principles. 

The scientific models themselves are not the the vital components 

described in thie section, instead it is the different ways in which 
we can use simulation, the different types and methods available 
to us, that open up different avenues for understanding, and 
predicting, the behaviour of products or systems as part of a 
digital twin.

We can think of simulation at different levels; each providing a 
varying level of detail, or fidelity, to meet the needs of differing 
real-world applications.

HIGH-FIDELITY SIMULATION

Using geometrically accurate representations of a system 
or component (often in three dimensions but could be two 
dimensional or axi-symmetric representations) provides the 
highest fidelity, and most detailed insight and detail, into the 
behaviour of the system-be it flow, structural behaviour, heat 
transfer, electrical behaviour or, electromagnetic (or other) 
behaviour. 

At this level of detail, simulations have the capacity for predicting 
complex behaviours using the fundamental governing equations 
of the physics, or other science, considered –tools like CFD, FEA 
and Discrete Element Methods (DEM) are examples of high 
fidelity simulation approaches. 

In order to provide this level of detail and insight, high fidelity 
simulation tools are usually, necessarily, computationally the 
most resource intensive of the levels discussed here; they 
require the most computational processing resources.  However, 
they provide the most flexible and the most comprehensive 
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approaches to solving engineering problems. It is unlikely that a 
high-fidelity model will generate new data in real-time, and this is 
where the next levels of simulation become more appropriate in 
many cases.

SYSTEM SIMULATION

System simulation is an approach using a reduced level of 
geometric detail than high fidelity approaches. System simulations 
usually employ one- or two-dimensional representations of a 
system, still often using the fundamental scientific laws and 
equations of a real-world behaviour, but with lower geometric 
resolution, fidelity and detail. This approach typically requires less 
computational resource than a high fidelity approach of the same 
system, and therefore less time to render the simulation solution 
and lends itself well to quicker solutions and larger system-level 
predictions.

Taking the example of a subsea production system, with a subsea 
jumper connecting a production tree to a manifold system. In 
Figure 3 below the jumper is shown in three-dimensions in a high-
fidelity CFD simulation  (left) and in a system simulation (right) 
below, both are being used to predict thermal behaviour.

Figure 3 Representation of a subsea jumper in a high-fidelity CFD simulation and 
system simulation predicting cooldown

The system comprises mainly insulated pipe with some exposed 
locations (cold spots) at lifting points and sensors. The jumper 
connects to the production system at each end with geometrically 
(and thermally) complex connectors. To understand the thermal 
behviour of this jumper (and connectors),  there is a need to 
predict the temperatures at many different locations.  We may 
use the temperature predictions to assess the risk of hydrate 
formation during production or in the event of a system shut-
down.

A high fidelity CFD simulation will use a 3D geometrical 
representation, allowing a very detailed view of the thermal 
distribution to be predicted throughout the jumper, but it will 
take longer than a system model.  A system simulation will give 
us a profile of temperature at points along the jumper but will 
not fully resolve areas of highly complex geometry or complex 
flow and thermal phenomena. For example, the detailed CFD 
simulation shown above can generate temperature distributions 
through the whole of the pipe, with an example of details shown 
in cross section in Figure 4.  Whereas the system simulation 
provides single point data at the monitored location or locations.   

Figure 4: Thermal distribution through a cross section of a subsea jumper

If a detailed understanding of the three-dimensionality in the flow 
and thermal distribution is needed, then high fidelity simulation 
is required. However, if all that is required is data at points along 
the system, in one or two dimensions, then resources and time 
can be saved by using system simulation techniques.  This does 
assume, however that we can accurately capture the overall 
system thermal behaviour, to the required accuracy, using the 
system-level approach.  This may need to be confirmed, validated 
or even trained through high-fidelity simulation or testing.  
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REDUCED ORDER MODELS

Reduced Order Models (ROM) refer to a variety of techniques 
used to reduce the computational complexity of mathematical 
models in numerical simulations.  At the lowest level of detail, 
fidelity and computationl resource, ROMs are often not based 
on fundamental scientific principles, instead they are commonly 
based on a mathematical description of a system that has been 
tuned or trained to match known real-world behaviours within 
a specific set of bounding or operating criteria.  This tuning, 
training and validation is often obtained from validated higher 
fidelity simulations, test or operational data.  Typically ROMs are 
low fidelity approximations, or reductions, of a system, usually 
used to predict specific behaviour of a system, or parts of a 
system in real-time.  

A ROM can be created in multiple ways.  The simplest ROM is 
perhaps a curve showing how two variables respond to one 
another to define a behaviour at a given location (perhaps 
changing temperature at a point in a system).  As the number of 
input or output variables increase a response surface may need to 
be generated, where we again feed data on how a system responds 
and then look up that data when it is is needed.  Alternatively, a 
simple mathematical (or sometimes science-based) model can 
be created, for example, describing system behaviour using a set 
of differential equations, characterized by the number of parts of 
a system and a number of coefficients that need to be trained, 
tuned and validated to predict a specific system response.

ROMs are the least versatile and flexible of the predictive 
approaches discussed here, but are the quickest and least 
resource intensive. They rely on the higher fidelity approaches 
(or physical data) from which the data can be used to build the 
reduced order model.

EXAMPLES OF THE PREDICTIVE DIGITAL TWIN

The following examples demonstrate how each of these 
simulation techniques can be used, and how they need to be 
brought together with physical data to generate the predictive 
element of a digital twin for operations, to provide valuable 
insights.

HEAT EXCHANGER INTEGRITY – THE PREDICTIVE 
ELEMENT

The first example looks at the integrity management of a heat 
exchanger, common to many production and process facilities, 
as shown in Figure 5. 

 

Figure 5: Shell and tube heat exchanger

The heat exchanger comprises a bank of looped tubes through 
which steam is passed and which exits the tube bank having 
transferred its heat to the operating fluid contained in the 
surrounding vessel.

In this case temperature sensors were reporting excessively high 
temperatures in some locations causing concern that the thermal 
gradients could generate stresses and fatigue issues that risk 
failure of the heat exchanger pipes.

During operation only temperature can be measured in the 
system, with measurements limited to temperature sensor 
locations, however more understanding of the system and 
ultimately understanding of the cause of the excessively high 
measured temperatures is needed.

Detailed insight from localised temperature data is required. For 
this, predictive engineering analytics can be used, in the form of 
simulation, in a number of ways.

Firstly, high fidelity CFD simulation was applied to predict flow 
distributions, detailed temperature distributions and heat 
transfer to get a complete picture of the system behaviour as 
shown in Figure 6.  This identifies an issue with flow distribution 
entering the heat exchanger tube bundles and causing excessive 
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temperature gradients.  This temperature data was then used in a FEA simulation 
as shown in Figure 7 to assess the operating life of the system, obtain the stress 
history experienced and predict the impact of the temperature gradients on the 
life of the equipment.

 Figure 6: Flow and thermal model of shell and tube heat exchanger (CFD) 

Figure 7: Thermal and stress model of a shell and tube heat exchanger (FEA)

But using this approach to assess the whole life 
of a system like this can take significant time, 
and the operating history and the operating 
life of this equipment is long and complex. In 
such circumstances the high fidelity approach 
is usually too time-consuming to assess the 
complete operating life alone. Instead, using the 
data generated to build a ROM, and training or 
educating it to allow us to predict the relevant 
data much more quickly. 

Building the Reduced Order Model

Taking the temperatures from the steam bank 
(i.e., the tubes), gives an understanding of the 
flow distribution using a CFD simulation and we 
can model the stress distributions for a small 
set of cases for which operating data is available 
using FEA. This approach was validated using 
known operating conditions and measured 
temperature data by comparing the predicted 
and actual system behaviour.  Using this data, 
operating conditions were correlated to a stress 
response, using FEA as shown in Figure 8.  This 
insight was used to identify the locations critical 
to the system’s integrity. 

By drawing correlations between the operating 
conditions and temperatures at sensor locations 
with stress predicted at the identified critical 
locations in the system, a ROM was generated 
and trained to match the system behaviour.  
Figure 9 shows the strong correlation between 
the data sets generated by the high fidelity FEA 
simulations and the ROM.  This provides the 
basis for gaining quick operational insight as the 
ROM runs in realtime.
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Figure 8 Correlating temperature-stress data at key locations

FIigure 9: Validation of the reduced order model
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Application of Reduced Order Model into operation

In operations, this works by taking the sensor temperature 
time history data and running this through the reduced order 
model. The ROM generates the stress response time history  
and an updated fatigue life which can then be used to calculate a 
remaining life, this process is shown in Figure 10. This new insight 
into the system can be used to inform operational cycles and 
maintenance schedules. 

In this way, we have operational temperature data that creates 
a summary of the structural integrity of the system in real time, 
this process is demonstrated in the figure below.  Extending this 
concept further, beyond the understanding of the current state 
of the equipment, the ROM can be used by engineers in operating 
roles.  Engineers, or even an algorithm, can explore and plan how 
to operate the heat exchanger in the future, based on operating 
requirements and planned maintenance schedules.

One aspect that the above approach cannot capture, or solve, 
is the maldistribution of the flow causing the potential integrity 
risk, perhaps better use of simulation at the design phase, or even 
design modification would be worth considering.

 

Figure 10 Reduced order model inputs and outputs



SUBSEA PRODUCTION - THERMAL MANAGEMENT

Thermal management is a key aspect of any subsea production 
flow assurance strategy.  This may be driven simply to maintain 
the required operating conditions between the reservoir and 
production facility, or by the need to manage the hydrate 
formation risk.  In many subsea production systems, this risk 
is related to the composition the of the fluids produced, the 
operating temperatures, pressures, and system configuration 
and design.  Accordingly, understanding thermal performance of 
such systems, whether reliant on passive or active insulation or 
even if uninsulated, is critical to successful and reliable production 
operations.

CFD is a high fidelity approach commonly used to aid design and 
to validate the thermal performance of subsea systems. However, 
the complex and resource intensive nature of this high-fidelity 
simulation approach is not conducive to delivering insight in real 
time during operations.

When introducing the concept of system simulation, the subsea 
jumper was introduced, which is essentially a pipe connecting 
a production tree (used to contract flow from and access to a 
subsea well) and a manifold system (connecting multiple wells).  
This is a highly three-dimensional system, in this case insulated 
to support thermal performance but with multiple coldspots 
and complexities such as the lifting points, temperate sensors 
and sand detectors and the connection systems at each end.  
To confirm that the system is designed to offer optimal thermal 
performance, CFD is often used to assess the jumper at a single 
worst case condition, but this offers little information about 
the thermal performance in operation away from this design 
condition. 

Modelling approach

With the subsea jumper installed and operational, it is common 
to use the design performance, checked against a single design 
condition, to drive operational decisions like the time available 
before starting hydrate mitigation measures, following a halt in 
production (no-touch period). However, operational conditions 
will vary significantly from design conditions.  In the event of a 
halt in production, the operating conditions could vary compared 
to the single design point considered.  This would produce a 
different thermal response from the system, leading to different 

time from stopping production to risk of hydrate formation.  
Knowing how much time is available before hydrates form could 
help to form operational decisions. 

When any engineering facility is operational, data is often needed 
in real time and it needs to be available in a manner that can enable 
engineering decisions.  As the previously detailed heat exchanger 
example showed, temperatures alone could not provide detail 
about the integrity of a system. Limited temperature sensor 
readings were being converted to a full temperature field, which 
was used to predict the stress history before the remaining life 
of the system could be predicted; this is the insight required, and 
which was delivered by the predictive element of the digital twin.

In the case of the subsea system, high fidelity simulations used in 
design cannot meet the requirement of delivering insight in real-
time.  In this case we turn to system simulation to deliver real-
time insight.  

Using system simulation, a model of the subsea jumper that 
represents the high-fidelity model can be built, just in lower fidelity 
as shown in Figure 3.  The advantage of the system simulation 
approach is that use can still be made of fundamental scientific 
principles and solving the physics of the system (like in a high-
fidelity approach) just with lower resolution.  This enables us to 
predict temperatures throughout the system and across a wider 
range of scenarios than would be possible with a mathematical 
ROM, whose range of applicability extends to the data-set used 
to build it i.e. it relies on being informed by science-based models 
or physical data.

In the case of the subsea equipment, high fidelity models are still 
required to help train and verify the system approach.  High fidelity 
CFD models are capable of predicting temperatures accurately at 
all locations in the system and can be used to tune and verify the 
system simulation; for example to account for complex design 
details or phenomena and their impact on thermal response at 
critical locations.  The process is shown schematically from CFD 
simulation to system simulation or ROM in Figure 11.
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Figure 11 How high-fidelity CFD simulation informs quicker system simulations and 
reduced order models (ROMs)

Building a reliable system simulation or ROM

For some engineering systems, a system simulation may often 
be built without the need to train or tune it using higher fidelity 
approaches; it depends on what is required to be taken from the 
data obtained and the system complexity.  For geometrically or 
operationally complex engineering systems, a system simulation 
may need to be trained to obtain accurate data.

In this example four different cases are simulated using the 
CFD approach as shown in Figure 12, these show temperature 
of production fluid at a given sensor location in the event of 
production shutdowns from different flowing temperatures 
(prior to shutdown). From those high-fidelity simulations, the 
regions where the key hydrate risks are located can be identified, 
and detailed temperature data gathered of how the whole system 
is behaving, both during production and following a shutdown as 
the system cools.

The first of the four CFD cases was used to train the system 
simulation; in this case it was used to tune local heat transfer 
coefficients and thermal characteristics where complex 
geometrical features exist in the system or insulation design. 
Using this training data, the other three cases were used to 
validate the system simulation to ensure it was able to predict 
temperatures accurately across all the conditions the equipment 
may experience. 

 

Figure 12 High-fidelity CFD data used to build the system simulation or ROM 

Figure 13 below shows the CFD cool down data and the 
prediction using the system simulation at one location where a 
geometrical feature exists in the first case. In the left hand chart 
some differences between the two temperature-time plots can 
be seen. By tuning the local heat transfer coefficients and thermal 
properties the system simulation was tuned until the data sets 
correlate well.  The right hand image in Figure 13 demonstrates 
how both the CFD and system simulation data fall on top of each 
other to provide the benchmark case one.
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Figure 13 Training the system simulation or ROM using optimisation

When the same tuned system simulation was applied to the 
remaining three cases, an excellent correlation can be as shown 
in Figure 14.  –In the figure below we present temperatures at a 
single location for cases 2 to 4, in each case the brighter coloured 
line is the system simulation and the darker line CFD data.  Very 
good agreement is gained across all locations between CFD 
and system simulation data.  This same correlation is obtained 
at other locations through the system.  In this way the transient 
thermal response of the complete subsea jumper was captured, 
and the system simulation provides a real-time prediction of the 
temperatures allowing risk of hydrate formation to be assessed.

Figure 14 Comparisons between high-fidelity and system simulations after training 
for 3 cases 

To summarise:  a high fidelity simulation was used to create a real-
time system simulation capable of informing hydrate formation 
risk – and this can be embedded very simply into the digital twin 
for operations, enabling operators access to a hydrate avoidance 
strategy that lives alongside the changing operating conditions, 
giving confidence to critical flow assurance decisions. Here we 
show how tools and approaches used to aid design can be further 
extended to support operational performance through the digital 
twin for operation.
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In addition, a digital twin that can predict performance, and 
understand historical performance, delivers the opportunity 
for engineers to look to better-understand and manage 
future operational scenarios.

Like any real-world engineering product or system, the digital 
twin has a lifecycle.  Data can be generated from our very 
first ideas about a concept and its feasibility, through detailed 
design, through manufacture and into operation. And if data is 
generated, it should be captured and used to inform and help 
engineers in the next phase of the lifecycle; here we aimed to 
show how simulation data, as often generated in design, can be 
used to deliver value in a digital twin for operation.

Delivering maximum value of the digital twin through the product 
lifecycle is about more than technical capability and technology; 
it will require a new dynamic in how traditional supply chains 
work together. Operators, equipment designers, the technology 
developers and engineering service providers must work together 
in closer collaboration throughout the engineering life cycle.

Whilst this paper has looked at just a small number of applications, 
it’s very easy to see how this concept can be applied in many 
different aspects of operational engineering – from integrity 
management through to production efficiency and environmental 
performance improvements to safety and risk management.

The different types of simulation discussed here (from high 
fidelity to system simulation and reduced order models) each 
have specific benefits and each provide value depending on the 
situation or scenario considered. Indeed, as demonstrated here, 
the greatest value is gained by using a combination of predictive 
techniques. The most appropriate technique to use depends 
upon where you are in the lifecycle and the data you need.

Similarly, whilst predictive engineering analytics provides data and 
insight, it needs to be coupled with field and test data. Neither can 
work alone if you are to obtain the full value of the digital twin.

C O N C L U S I O N S

The digital twin offers operators a major step-change in how systems can be operated and 
maintained by delivering real-time insight into the efficiency, integrity and reliability. 
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