

The Future Evolution of Sustainable Aviation

Hydrogen – Reality or Hype?

Dr Mark Eldridge – 22nd March 2023, Coventry

The Rapid Need to Decarbonise

TIME ?

Global temperature anomaly (relative to 1951-1980) Image: NASA: Earth Observatory

H2 is an elegant Energy Vector

The H2 landscape

H¹Start with something small and light..

90% of our Universe atoms are H2 10% of our Body Common Water reference Only element that can exist without neutrons

Table 1 - Characteristics of hydrogen, dry natural gas and gaseous propane

Property	Dry natural gas (methane)	LPG (propane)	Hydrogen
Density (Kg/m ³) *	0.65	1.88	0.090
Diffusion coefficient in air (cm²/s) \ast	0.16	0.12	0.61
Viscosity (g/cm-s x 10 ⁻⁵) *	0.651	0.819	0.083
Ignition energy in air (mJ)	0.29	0.26	0.02
Ignition limits in air (vol %)	5.3 - 15.0	2.1 - 9.5	4.0 - 75.0
Auto ignition temperature (C)	540	487	585
Specific heat at constant pressure (J/gK)	2.22	1.56	14.89
Flame temperature in air (C)	1875	1925	2045
Quenching gap (mm) *	2	2	0.6
Thermal energy radiated from flame to surroundings (%)	10-33	10 - 50	5-10
Detonability limits (vol % in air)	6.3-13.5	3.1 - 7.0	13-65
Maximum burning velocity (m/s)	0.43	0.47	2.6

* at normal temperature and pressure - 1 atmosphere and 20°C

Perspectives are Key

H2 We need to look at the whole system

ITS NOT JUST HYDROGEN

Hydrogen <u>Must Always</u> be Considered as Complimentary in the Energy System based on Sound:

Economic Thermodynamics and Metallurgy Environmental Alternatives Specific Contexts AND/OR – to Both? Where is the system boundary

Seasonal Effect of Heating

Figure 2: Britain's local gas demand and electrical system supply - median and maximum demand weeks. The week dating 22nd to 28th January is the median demand week for the 2017–2018 heating season. The week dating 26th February to 5th March represents the maximum demand week of the 2017–2018 heating season.

Efficiency Losses

HYDROGEN AND ELECTRIC DRIVE

Efficiency rates in comparison using eco-friendly energy

20 - 30% of energy is lost in the process of creating hydrogen. The hydrogen must then be compressed and stored, losing another 10%. Finally, another 30% is lost when converting the hydrogen into electricity. This leaves you with 30 - 40% of the original energy used.

Where do we make Hydrogen and Where and How Should it Get there?

Fig. 6 - Supply cost to Germany for an import volume of 100 TWh/a in the baseline scenario and the year 2030.

Estimating global production and supply costs for green hydrogen and hydrogen-based green energy commodities

SAF vs Where we are Today

Higher contrail formation

Lower contrail formation

BACK TO HYDROGEN PROPERTIES

90% of our Universe atoms are H210% of our BodyCommonly found in waterOnly element that can exist without neutrons

Table 1 - Characteristics of hydrogen, dry natural gas and gaseous propane

Property	Dry natural gas (methane)	LPG (propane)	Hydrogen
Density (Kg/m ³) *	0.65	1.88	0.090
Diffusion coefficient in air (cm²/s) \ast	0.16	0.12	0.61
Viscosity (g/cm-s x 10 ⁻⁵) *	0.651	0.819	0.083
Ignition energy in air (mJ)	0.29	0.26	0.02
Ignition limits in air (vol %)	5.3 - 15.0	2.1 - 9.5	4.0 - 75.0
Auto ignition temperature (C)	540	487	585
Specific heat at constant pressure (J/gK)	2.22	1.56	14.89
Flame temperature in air (C)	1875	1925	2045
Quenching gap (mm) *	2	2	0.6
Thermal energy radiated from flame to surroundings (%)	10-33	10 - 50	5-10
Detonability limits (vol % in air)	6.3-13.5	3.1 - 7.0	13-65
Maximum burning velocity (m/s)	0.43	0.47	2.6

Propensity to leak
Low Viscosity
Very high diffusivity
Likelihood of Embrittlement
Storage Volume
Transportation
Weight
Technical Challenges
Propensity to Ignite
Wide flammability range
Very low ignition energy
Spontaneous Ignition
Consequences of Fire and Explosion
Invisible Flame
Rapid Burning Rate
Possibility of detonation

* at normal temperature and pressure - 1 atmosphere and 20°C

Wings to Central Body

Options for Range Flight

Possible Roll-Out Scenarios?

	2020	2025	2030	2035	2040	2045	2050
Commuter • 9–19 seats • < 60 minute flights • < 1% of industry CO ₂	SAF	Electric or hydrogen fuel cell and/or SAF					
Regional • 50–100 seats • 30–90 minute flights • ~3% of industry CO ₂	SAF	SAF	Electric or hydrogen fuel cell and/or SAF				
Short haul • 100–150 seats • 45–120 minute flights • ~24% of industry CO ₂	SAF	SAF	SAF	SAF and possibly some hydrogen	Hydrogen and/or SAF	Hydrogen and/or SAF	Hydrogen and/or SAF
Medium haul • 100–250 seats • 60–150 minute flights • ~43% of industry CO ₂	SAF	SAF	SAF	SAF	SAF and possibly some hydrogen	SAF and possibly some hydrogen	SAF and possibly some hydrogen
Long haul - 250+ seats - 150 minute + flights - ~30% of industry CO ₂	SAF	SAF	SAF	SAF	SAF	SAF	SAF

System Scalability and Time

- Global H2 ~ 75 million tonnes per year demand > projected to 621 million tonnes 2050.
- 75 Million Tonnes is Grey without little or no CCUS infrastructure.
- e.g.Paris Orly Airport filling up 30 percent of flights H2 270 tons of 'liquid' hydrogen per day.
- Largest single liquefier 32 tonnes per day (TPD), global capacity is 350 tonnes per day.
- Liquifaction energy losses (~40%), Safety, Scale....
- Hydrogen from Electrolysis 18 gigawatt-hours every day one typical nuclear plant 900 MW.
- The electricity is produced through solar power, 44 square kilometers of solar panels would be needed—a footprint representing three times the entire surface area of the airport.
- Largest hydrogen-electrolysis plants today ~20 megawatts of capacity maximum production of just 0.5 gigawatt-hours a day—A growth factor of 50x.

Hydrogen Liquifaction (Review Article) <u>Energy Environ. Sci.</u>, 2022, **15**, 2690-2731

International Energy Agency (IEA), Energy Technology Perspectives 2020, Paris, France, 2020.

Airport Challenges (aside from the Aircraft)

H¹ Element – Assuring Your Energy Transition

Combination of Testing and Digital Engineering : Full Product Development Life Cycle

Physical Experience

Pipeline installation & operation, input data, ECA analysis, In-situ fracture testing, Riser fatigue testing, Reeling, AUT validation

Weld & material integrity HPHT, Sweet & Sour operations, Full Ring Testing, Inhibitor Testing, Failure Analysis

FJC, Chemical resistance, CD testing, Subsea insulation, HPHT testing, CUI, Electrochemical, Inspections, Failure Analysis Flexible pipes, Umbilicals, Elastomer seal testing, Composite ageing, HPHT: H₂S, CO₂, Hydrocarbon compatibility

H2 Piping – Evolving Infrastructures

Examples for Metallics

MECHANICAL PROPERTIES - HYDROGEN EFFECT

	_		-		
Source	-	UK	(H	SE	

Limited or	r no effect	Some effect	Significant effect Unknown/ High strain rate				
Generic property	eric property Pipeline Steel Parameters		Effect of Hydrogen				
Strength	Yield (0.2%	or 0.5% proof stress)	Limited effect				
	Ultimate tensile strength (UTS)		Limited effect				
	YS/UTS rati	o (Y/T)	Limited effect				
	Young's Modulus (E)		No effect				
	Polsson's ratio (v)		No effect				
Ductility	Elongation	(Total)	Significant reduction				
	Elongation (Uniform)		Limited effect				
Charpy impact	Charpy imp	act energy	Limited data found, High strain rate				
Crack propagation resistance	Drop weigh	t tear test (DWTT)	No data found on DWTT, but possibly limited effect due to high strain rate				
Fracture toughness	K/J/CTOD initiation fracture toughness		s Some reduction				
	J/CTOD ductile tearing resistance		Significant reduction				
Fatigue	Fatigue threshold stress intensity factor range (△Kth)		slight reduction in some cases				
	Fatigue Crack growth rate		Significant increase, many variables				
	S-N fatigue line		Effect observed more strongly in high stress LCF region				

Like sand on the beach – it gets everywhere!! HE Cracking Mechanisms

Schematic NVC mechanism – from Neeraj et al., Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by microvoiding, Act. Mat. 60(2012, 5160-5171 HEDE – Hydrogen Enhanced Decohesion

AIDE – Adsorption Induced Dislocation Emission

IHAC – Internal Hydrogen Assisted Cracking

HEAC - Hydrogen Environment Assisted Cracking

NVC - Nano Void Coalescence

HELP – Hydrogen Enhanced Local Plasticity

Fatigue Endurance - in-situ

Surface Crack Initiation

ASME B31.12 Standard on Hydrogen Piping and Pipelines contains requirements for piping in gaseous and liquid hydrogen service and pipelines in gaseous hydrogen service.

Non-Metallic Effects of H2

Permeation

Thermoplastic hydrogen 40 bar 40 °C:

Rapid Gas Decompression with H2

□ Carbon dioxide has for years caused RGD damage:

Digital Experience

PRODUCTION

TRANSPORT AND STORAGE

UTILISATION

- EXPLOSION RISK AND CONSEQUENCE MODELLING OF ELECTROLYSERS
- ELECTROCHEMICAL MODELLING OF
 ELECTROLISER STACKS
- PLUME DISPERSION AND IGNITION RISK
 MODELLING
- SYSTEM-LEVEL MODELLING OF STORAGE CONTAINER RE-FUELLING OR DISCHARGE OPERATIONS
- THERMO- AND FLUID DYNAMICS OF CRYOGENIC HYDROGEN STORAGE
 AND TRANSPORT
 - LEAKS AND EXPLOSION MODELLING OF TRANSPORT INFRASTRUCTURE
 - PLUME DISPERSION AND IGNITION RISK MODELLING

- FUEL CELL THERMAL AND FLUID DYNAMIC MODELLING AND OPTIMISATION
- FUEL CELL EXPLOSION AND CONSEQUENCE
 ANALYSIS

element

Digital Asset Management

- Digital twin technology for real time condition assessment
- Life extension / extended time between overhaul
- Maintenance based on actual use not conservative design assessment

Safety: Explosion modelling and structural response

Outcome

Explosion risk assessment generated, submitted and accepted by the safety authorities. The vessel is now in service.

Disbla Sim FPS

Challenge

- Safety studies for FPSO
- Dispersion, helideck safety & blast response
- Simulation used to support FPSO design

Our work

 Simulation used to assess consequences of accidental gas releases and quantify blast over-pressures along with assessment of helideck safety and structural response

Sloshing of cryogenic hydrogen tanks

Challenge

In applications where cryogenic hydrogen storage is considered, the risk of sloshing-induced hydrogen boil-off must be assessed to determine overpresurization rates

element Digital Engineering

Outcome

We have assisted a UK government-funded Aerospace programme by delivering new insights regarding the behaviour of the liquid hydrogen undergoing sloshing

Our Capabilities

Norton Straw have implemented a calibrated boiling model in the commercial CFD tool StarCCM+. This model has then been validated against experimental data and used to produce insights regarding sloshing-induced hydrogen boil-off.

Cryogenic cooling using liquid Nitrogen

Challenge

A client have approached Element asking for support in development of a tool that operated cryogenic N₂ to cool metal structures

element Digital Engineering

Outcome

As a result of our work, our client could make an informed decision with respect to the viability and cost-savings associated with the tool they were deploying

Our Capabilities

We have produced two analyses. A system-level analysis was conducted using FlowMaster to determine pressure-drop in the system and the level of heating of the Nitrogen. A CFD multi-phase analysis was then conducted to determine the efficiency of the deployed Nitrogen jet to cool metal structures

Turbine Component Lifing

- Development of novel materials test programs to support
 - Constitutive model development
 - Creep-fatigue lifing models
 - Corrosion / coating models
- Lifing model development
 - Classical N/Nf and t/tr approaches
 - Development of ductility exhaustion methods, e/ef
 - Combined Creep-Fatigue
- Implementation to Finite Element Analysis
 - Development of User Elements / UMATs for industry standard solvers
 - Development of bespoke FEA solutions
- Methods development to support life extension of UK Nuclear AGRs

Hydrogen fuel cell performance optimisation

Challenge

We have been approached by a fuel cell manufacturer to support the troubleshooting of in-service operation of their fuel cell.

Our work

Computational Fluid Dynamics models were built and used to predict flow distribution and characterize non-uniformity in the catalyst and the cell itself. The team proposed a design modification consisting of porous strips used to improve flow uniformity within the fuel cell.

Outcome

The client received a solution which helped reduce wear of fuel cell whilst in operation saving costs of maintenance over time.

Where can we fit: Systems and Component Level

Hydrogen <u>Must Always</u> be Considered as Complimentary in the Energy System based on Sound:

Economic – Supply/Demand/Cost Thermodynamic and Metallurgy Environmental Alternatives Specific Contexts AND/OR – to Both? Where is the system boundary Resistance to HE In a timely fashion....

Centrol Coolers.com

Thank you for listening....

Dr Mark Eldridge Director of Hydrogen 07827926757, mark.eldridge@element.com