Fatigue testing characterizes material or component behavior during cyclic loading. Our test machines can help test cyclic loads for vital properties, such as fatigue failure, fatigue limit, and fatigue life.

 

What is fatigue testing? 

A fatigue test measures how cyclic forces will affect a product or material over time, by analyzing various sizes of cyclic loads in our test machines, under different speeds and environmental conditions, we can create predictive patterns for material behavior. While a large portion of fatigue tests are performed to plot stress (S) against the number of cycles to failure (N) (also known as an S-N curve), they can also be useful for simulating specific scenarios and investigating real-world fatigue failures. 

 

Why is fatigue testing important? 

Understanding fatigue properties is one of the most crucial elements of research and development, product safety, and material verification programs. It's important to test your materials & products to understand their performance, fatigue limit & fatigue life.

 

What is the purpose of fatigue testing? 

Some products, such as medical devices, must conform to rigorous international standards for endurance properties. Other products, such as industrial components and consumer goods, often see manufacturers and testing companies working together to develop customized fatigue testing methodologies suited for the specific product’s application and end-use environment.

 

Material fatigue testing we offer

 

Types of fatigue testing we provide 

  • High cycle fatigue (HCF) testing 
  • Low cycle fatigue (LCF) testing 
  • Thermo mechanical fatigue (TMF) testing
  • Axial fatigue testing
  • Torsional fatigue testing
  • Shear fatigue testing
  • Proof load testing
  • Bending fatigue testing
  • Fatigue crack growth testing
  • Resonance fatigue testing
  • Multiple degrees of freedom fatigue testing
  • Multi-channel/compound cyclic testing
  • Strain Control
  • Stress Control
  • Displacement Control
  • Frequency up to 100 Hz (rotating beam up to 150 Hz)
  • Forces up to 250 kNTest temperatures from -320 to 2400 F)
  • Custom and special project setups are available

 

ASTM fatigue testing standards we test for

 

The Element advantage

Element's laboratories around the world provide testing solutions to help make certain that your products and materials are safe and fit for purpose. Our analytical testing services utilize cyclic loads in test machines to understand fatigue failure under a multitude of different scenarios. We also apply constant amplitude and sinusoidal waveform applications during testing.

Understand when your product or material is at its fatigue life or fatigue limit with Element's test machines. 
Whether you require testing to existing standards or are interested in creating a custom test program, our experts are ready to assist with your materials testing needs.

For more information about our fatigue testing services or to request a quote, contact us today

 

The Element advantage

As a recognized leader in fatigue testing, Element has laboratories throughout the United States and Europe ready to assist with your toughest material or product challenges. 

For more information about our fatigue testing methods or to request a quote, contact us today. 

 
Aerospace Industries Association/National Aerospace Standards

NAS 1069, NASM 1312-11, NASM 1312-21

ASTM International 

ASTM C1360, ASTM C1361, ASTM D7774, ASTM D671, ASTM D3479, ASTM D4482, ASTM D6873, ASTM D6926, ASTM E206, ASTM E2368, ASTM E399, ASTM E466, ASTM E488, ASTM E606, ASTM E647, ASTM E1190, ASTM E1290, ASTM F1160, ASTM F1717, ASTM F1800, ASTM F2345, ASTM F2706

British Standards Institute

BS 3518, Part 2 & 3, BS EN 1992-1-1

General Motors North America

GMN7152, GMW16704, GMW16705

International Organization for Standardization

ISO 1143, ISO 12107, ISO 3800, ISO 6157-3

Japanese Industrial Standard

JIS B1051

Military/Department of Defense Standards

DOD-STD-1312-111, MIL-STD-1312-11

National Aerospace Standards/Aerospace Industries Association

NASM 1312-11, NASM 1312-21, NAS 1069

SAE International

SAE J 123

We also test to a number of customer standards, including GE, Honeywell, SAFRAN, Pratt & Whitney, and MTU. 

Fatigue & Fracture Toughness 

Fatigue in metals caused by cyclic loading progressively damages a localized area of a structure, eventually leading to the formation of cracks. Once a crack is formed, it will grow with each application of load.

Learn more about fracture toughness in metals in our latest whitepaper and uncover how materials react under test conditions.

Free Download

A Guide to Fatigue Testing in Composite Materials 

We explain how composite fatigue testing is performed, key methods, how fatigue testing of impact-damaged laminates work, and fatigue crack growth testing. 

READ MORE

Multiaxial Fatigue Analysis

Multiaxial fatigue analysis replicates real-world service environments' load and stress conditions in controlled laboratory settings to develop safer materials and components. Read more

Fatigue Testing of Pipeline Girth Welds 

Steel Catenary Risers are a critical element within many offshore pipeline installations. Learn more about the approach to the validation of the fatigue performance of pipeline girth welds in our whitepaper.  READ MORE

Fatigue Failure: How can you Tell? 

Fatigue failure is an extremely important design consideration for a variety of industries. Learn more about the characteristics of fatigue failure. READ MORE

Our team of over 9,000 Engaged Experts in North America, Europe, The Middle East, Australia, Asia and Africa are ready to help you.