When friction is the predominant factor causing deterioration of your materials, abrasion and wear testing will give you data to compare materials or coatings and can help you predict the lifetime of a material or coating.

Abrasion testing is used to test the abrasive resistance of solid materials. Materials such as metals, composites, ceramics, and thick (weld overlays and thermal spray) coatings can be tested with these methods. The intent of abrasion testing is to produce data that will reproducibly rank materials in their resistance to scratching abrasion under a specified set of conditions.

Standard abrasion testing methods should not be used to predict the exact resistance of a given material in a specific environment. Its value lies in predictively ranking materials in a similar relative order of merit as would occur in an abrasive environment.  

A customized wear testing program, on the other hand, can be configured to closely mimic actual operating conditions, including temperature and fluids, and direction of wear. This custom approach will result in wear testing data that is much more relatable to the specific work environment in question.

Abrasion Sample Measurement

Abrasion Testing Methods

Element's abrasion testing capabilities provide reliable characterization of a material or coating's abrasive resistance, allowing manufacturers to select the most appropriate material for a specific application.

Pin Abrasion Testing (ASTM G132)

Pin abrasion testing is performed using two pin specimens; the subject material and a reference material. A pin is positioned perpendicular to an abrasive surface, which is mounted on and supported by a flat surface. The pin abrasion testing machine permits relative motion between the abrasive surface and the pin surface. The wear track of the pin is continuous and non-overlapping. The pin rotates about its axis during testing. The amount of wear is determined by weight loss. ASTM G132 calls for a reference specimen to be included in the calculation in order to correct for abrasivity variations. 

Rubber Wheel Abrasion Testing (ASTM G65) 

Rubber wheel abrasion testing is performed by loading a rectangular test sample against a rotating rubber wheel and depositing sand of controlled grit size, composition, and flow rate between them. The mass of the test sample is recorded before and after conducting a test. To develop a comparison table for ranking different materials, it is necessary to convert this mass loss data to volume loss in order to account for the differences in material densities. 

Taber Abrasion Testing (ASTM D1044, ASTM D4060, & ASTM F1978) 

Taber abrasion testing is performed by mounting a flat specimen, either square or round, to a turntable platform that rotates two abrasive wheels over the specimen at a fixed speed and pressure. One wheel rubs the specimen outward toward the periphery and the other, inward toward the center. Specimen mass (ASTM D4060) or haze (ASTM D1044) is measured pre-test and post-test to allow for material property comparisons. A wide variety of abrasive wheels are available for Taber abrasion testing, depending upon the project goal.

Other abrasion methods offered:
  • Coil Coating Abrasion per ASTM D3794
  • Furniture Resistance to Scratching per EN 15186
  • Hot Stamped Label Abrasion Resistance per Delco TM-224
  • Los Angeles Abrasion Testing per ASTM C131
  • Martindale Abrasion Testing per ASTM D4966
  • M.E.K. Solvent Rubbing Test per ECCA-T11 
  • RCA Abrasion Testing per ASTM F2357
  • Rotary Platform Abrasion per ASTM C501, ASTM D1117, ASTM D3389, ASTM D3884, ASTM D6037, ISO 9352
  • Rub Abrasion Mar Resistance per ASTM D6279
  • Solder Mask Abrasion Testing (Pencil Method) per ASTM D3363 & IPC-TM-650
  • Wyzenbeek Abrasion Testing per ASTM D4157
Wear Testing

Wear Testing Methods

Element's comprehensive wear testing capabilities mimic actual operation conditions, from temperature and lubricity to directional motion and applied force.

Blade-on-Block Wear Testing

Blade-on-Block wear testing typically utilizes an object (block) that articulates back and forth on a stationary specimen (blade) while being subjected to a constant normal load. Blade-on-Block testing is especially useful when a specimen needs nonstandard environmental conditions or a higher load force than Pin-on-Disk testing can achieve. 

Block-on-Ring Wear Testing (ASTM G77)

Block-on-Ring wear testing involves the application of a normal load to a metallic test block, which is simultaneously subjected to a sliding, abrasive motion against a metallic ring. This test is often used to rank material pairs based on volume loss for both the block and the ring. 

Medical Device Wear Testing

Medical device wear testing is utilized to characterize the tribological properties of a medical device by simulating the kinematics and kinetics of the human body, in an environment that closely simulates intended use. Commonly tested devices include hip, knee, and spinal devices. Read More 

Pin-on-Disk Wear Testing (ASTM G99, ASTM G133, and ASTM F732)

Pin-on-Disk wear testing involves abrading two materials – one material is machined into a pin, the other into a disk – to determine a variety of properties, including wear rates and frictional force coefficients. Pin-on-Disk can be conducted at elevated temperatures or in submerged environments to more accurately simulate “real life” wear conditions. Read More

Other wear testing methods offered:

  • Coated glass wear resistance per EN 1096-2
  • General Motors wear testing per GME 60269, GME 60368, GME 8797, GMW 14125, GMW 14130, GMW 14688
  • Plastic trim wear testing per Mitsubishi Motors ES-X60210
  • Rear-view mirror wear testing per Daimler-Chrysler MS-3589
  • Wear and Scratch resistance per Kia MS 210-05 & Toyota Engineering Standard TSL2105G
service details


ASTM International

ASTM C131, ASTM C33, ASTM C501, ASTM D1044, ASTM D1117, ASTM D3389, ASTM D3884, ASTM D4060, ASTM D4157, ASTM D4966, ASTM D6037, ASTM F1978, ASTM F2357, ASTM F732, ASTM G132, ASTM G133, ASTM G65, ASTM G77, ASTM G99 

Automotive Test Standards

Daimler-Chrysler MS-3589  Mirror-Rearview-Flat or Convex

Delco TM-224 Abrasion Test: Hot Stamped Finishes and Labels

ECCA - T11 M.E.K./Solvent Rubbing Test - Organic coatings on metallic substrates  

EN 1096-2  Glass In Building - Coated Glass

ES-X60210 (Mitsubishi Motors) Plastic Parts - Interior Trims

Kia MS 210-05  Wear and Scratch resistance

Toyota Engineering Standard TSL2105G Wear and Scratch resistance

GME 60269 General Motors  Abrasion Resistance of Metallized, Painted, Printed Plastic Parts

GME 60368 General Motors f Abrasion Resistance of Artificial Leather

GME 8797 General Motors Stability of Textile decoration Materials against Mechanical Load

GMW 14125 General Motors Linear Abrasion Testing

GMW 14130 General Motors Resistance to Marring or Scuffing

GMW 14688 General Motors Plastic Scratch and Mar Resistance

SAE International


Ready to request a quote?

Our deliverable is certainty - high quality data, test reports and certificates that you can absolutely rely on when making decisions about your materials and compliance. Engage with an expert today.

Request a Quote for Materials Testing Services

Request a Quote Our team of nearly 2,000 Engaged Experts working across the USA and Europe are ready to support you.

Request a Quote